
Abstract- The cardiotocograpy (CTG) is the clinical, traditional, 
noninvasive approach to monitor the fetal condition 
antepartum. CTG analysis is focused on the detection of fetal 
heart rate parameters from which the clinicians can  identify by 
eye inspection some patterns associated to fetal activity. 
However this qualitative method rarely can detect the 
emergence of fetal pathologies. This study aims at finding new 
algorithms which can enhance the differences among the normal 
CTG signals and those presenting anomalies due to a 
pathological status.  
On a database of more than 500 recordings, we tested different 
classification methods to identify normals from potential 
pathological fetuses. A Multilayer Perceptron (MLP) neural 
network and an Adaptive Neuro-Fuzzy Inference System 
(ANFIS) were compared with classical statistical methods. Both 
the neural and neuro-fuzzy approaches seem to give better 
results than any tested statistical classifier. 
Keywords -  Fetal Heart Rate, Neural Networks, Fuzzy Systems, 
Multivariate Methods  

 
I. INTRODUCTION 

 
The cardiotocography (CTG) is regularly monitored in the 
clinical routine antepartum and during the labour in order to 
prevent a possible fetal sufferance status. It consists of the 
simultaneous recording and printout of two signals: the 
heartbeat frequency of the fetus and the toco signal, relative 
to the uterine contractions. 
It was only at the end of the 60’s, when the fetal heartbeat 
could be rather easily detected by means of ultrasound (the 
Doppler-shift) or through the application of direct 
electrocardiography, that cardiotocography became popular 
as the method to monitor the condition of the fetus. This 
modality provides not only continuous heart rate information, 
but also fetal heart rate changes in response to uterine 
contractions. Currently the majority of obstetric decisions to 
assist delivery of the baby by artificial means (caesarean 
section, forceps or vacuum extraction) for reasons of 
suspected fetal distress, relies on information gathered 
through the application of cardiotocography. It is the 
obstetrician’s reassurance that if the fetal heart rate (FHR) 
pattern is normal then there is the nearly 100% certainty that 
the fetus is in a good condition, which has made 
cardiotocography so attractive and has induced its widespread 
use [1].   
The classical cardiotocographic analysis by simple eye 
inspection has drastically reduced the incidence of deaths 
during the labour and also in premature newborns, although 
the presence of many false positives. This problem can be 
attributed to the inter and intra-observer variability, in the 
interpretation of the CTG signals, due in the first case to the 

different levels of experience of the various specialists , and 
in the second to suggestive factors (stress, environmental 
conditions). The reading of the printout in most cases is 
mainly a subjective process and, in certain cases, may lead to 
a wrong decision. The obvious consequence, in a false 
positive case,  can be to decide to execute a caesarean when it 
is not necessary, or , in a false negative case to let the 
pregnancy go on, when a caesarean should have been done. 
Although a number methods for judging CTG recordings 
were proposed [2, 3, 4] and few systems able of automatically 
computing quantitative parameters were developed [5,6], no 
one of them showed a strong reliability in predicting the fetal 
well-being 
The aim of the present work is to test and compare several 
classification techniques of the CTG signal, allowing to 
evolve into a reliable automatic system of “reading” and 
analysing the CTG tracings in the hope of diagnosing any 
eventual fetal suffering status. 
 

II. METHODOLOGY 

 
A. Data collection 
The data were recorded during two years in a University 
Clinic in Rome, Italy. 815 CTG recordings were collected 
from four identical devices (HP M135XA). For 549 of them 
we even knew the diagnosis of the physician at delivery 
(weight, type of delivery, Apgar score). Each recording lasted 
at least 30 minutes and it contained both the cardiographic 
series and the toco trace. We focused on four potential 
pathological states: (i) nutrition alterations caused by 
maternal hypertension (H),(ii) intra-uterine growth retardation 
(IUGR), (iii) nutrition alterations caused by maternal diabetes 
(DG), and (iv) fetal macrosomia (MACRO). The gestational 
age was in the range 28–42 weeks. 
 
B. FHR Preprocessing 
A quality index quantifies three different levels of the FHR 
signal (optimal (green), acceptable quality (yellow) and 
insufficient quality – signal unavailable (red)). The evaluation 
is based on the output of the autocorrelation procedure 
implemented in the HP1350. Signals were recorded at the 
highest available sampling frequency (2Hz). Each FHR series 
underwent a subdivision into 3-minutes segments (360 
points) after removing the red-quality points at the beginning 
of the sequence. We obtained a set of 549 recordings, in 
which we further considered only those with 5 segments (360 
points each) of sufficient quality at least, discarding the other 
ones. This second level of refinement led us to a subset of 
362 valid recordings which are summarized in Table 1.  
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TABLE I 
ANALYZED SUBJECTS 

ID Pathol. 
State 

N° Patients N°Recordings 

1 N 154 200 
2 H 32 53 
3 IUGR 23 40 
4 DG 19 38 
5 MACRO 24 31 
Total    252 362 

 
C. Parameters Extraction 
In order to extract the diagnostic information from the CTG 
signals, we calculated a series of parameters in time and in 
frequency domain. They are summarized in Table 1. Most of 
them can be related to the physiological mechanisms that 
perform the control of the HR signal. The final goal of our 
research was to investigate if a group of indexes, x, is able to 
characterize the signal, that is, if it is possible to 
automatically allocate, by means of a classification technique, 
a fetus to a pathological state according to the value of x.  
When possible, parameters have been calculated more then 
once (on each sufficient quality 3-minutes-segment and on 
each minute) and subsequently averaged.  
A set of 15 parameters plus the gestational age of the fetus, 
constituted the multivariate variable x, which was used for the 
classification process. 
Parameters might be grouped as: 

• Morphological - large and small accelerations per 
hour, decelerations per hour and contractions per 
hour  

• Time domain - FHR mean over a minute (mean 
FHR), FHR standard deviation (std FHR), Delta 
FHR, Short term variability (STV), Long term 
irregularity (LTI), Interval Index (II), 

• Frequency domain from autoregressive power 
spectrum estimation - LF-power, MF-power, HF-
power and LF/(MF+HF)) and  

• Regularity parameters  - approximate entropy 
(ApEn) [7]  

 
Accelerations and decelerations were computed automatically 
by the Mantel’s algorithm [3], as well as the uterine 
contractions, that resulted from the application of a modified 
version of the FHR baseline computation applied to the 
tocographic signal. The remaining parameters were computed 
as reported in [8]. 
A few standard statistical analysis were performed on the 
parameters set to verify the degree of linear dependence. As 
part of the computations involved in several methods, the 
covariance matrix of the variables in the model is inverted. 
Variables linearly dependent on the other ones would lead to 
ill-conditioned matrices, which can not be inverted. 
Moreover, completely redundant variables would only make 
computations more complex. From the analysis of the 
covariance matrix [9], the condition number resulted always 
acceptable.  
 

TABLE 2 
LIST OF COMPUTED PARAMETERS 

computed on the whole signal: 

(1) n. large accelerat. / hour (2) n.small accelerat. / hour 
(3) n. decelerations / hour (4) n .contractions / hour 

computed on each 3-minutes SQ-segments 

(5) mean FHR (ms) (6) std FHR (ms ) 
(7) LTI (ms) (8) LF-power (ms 2 ) 
(9) MF-power (ms 2 ) (10) HF-power (ms 2 ) 
(11) LF/(MF+HF) (12) ApEn(1, 0.2) 

computed on each minute in each 3-minutes SQ-segments 

(13) Delta (ms) (14) STV (ms) 
(15) IntervaI Index    
 
D. Classification With Multivariate Methods 
The object of the multivariate statistical analysis proposed in 
this paper are variables which have been measured in human 
fetuses by means of cardiotocographic equipments.  
The data set is a matrix X (n × p), where n is the number of 
observations (362 recordings) and p the number of variables 
parameters computed on each recording). A single row of X 
may be though as an observation extracted from a 
multivariate distribution. 
Multivariate methods can be separated in two main groups: 
(i) methods that assume a given structure into g groups and 
specify to which of them each case belongs; (ii) methods that 
seek for discovering a possible structure in the dataset, 
eventually obtaining a separation into groups [10]. Following 
the typical terminology of pattern recognition, the first ones 
are called supervised methods and the second ones 
unsupervised. Supervised methods try to allocate future cases 
(for example, future CTG recordings) to one of the g pre-
specified classes in which the current observations are 
collected. Modern statistics refers to the process of case 
allocating into predefined classes (medical diagnosis, for 
example) as “classification” [11]. Almost all classification 
methods can be seen as ways to approximate an optimal 
classifier, the Bayes rule. Given a future case x, the classifier 
finds the class k with the largest posterior probability p(k | x) 
and allocates the case to this class. The posterior probability 
are learned from a training set, a collection of examples, 
already classified (by experts or physicians, for example). 
This approach, where the estimated probabilities p(k | x) are 
used as true probabilities, can result in over-fitting, by 
performing very well only on the training set but not on any 
future cases. To avoid this problem, the available data are 
usually split into two subsets, a training and a test set. The 
first one is used to estimate the classification model; the 
second acts as a group of future cases and is classified with 
the model previously obtained. In this way over-fitting is 
excluded (the second set was not employed when the 
classifier was constructed) and a reliable estimation of the 
performances of the classification process is achieved. 
In our approach we decided to use the following statistical 
methods: 



• Linear & Quadratic Discriminant Analysis (LDA 
and QDA) 

• Logistic Discriminant Analysis 
• K-nearest neighbour classifiers 

 
 
E. Parameters Reduction 
In order to use efficiently soft computing methods as neural 
networks and fuzzy systems, we needed to reduce the number 
of variables. This is mainly due to several wellknown  
reasons: the difficulty of managing fuzzy systems with a quite 
large number of inputs, the risk of overfitting with a large 
number of neurons in the NN with a small training set, the 
convergence time of learning procedures and the probability 
to fall in a local minimum in a hyperspace of 16 dimensions. 
Moreover it would be possible that a few variables were not 
relevant to the classification process and were acting as noise. 
Unfortunately, both the MLP and the ANFIS are essentially  
nonlinear systems and they do not allow to uniquely 
distinguish which parameters are less important then the other 
ones inside the classification process. Therefore, several 
different approaches were attempted. Most of them are 
relevant to the construction of a linear model. Nevertheless 
they can give interesting insight and a possible starting point 
in the variable selection process which must be performed by 
successive experiments, anyhow. 
We applied Mono-variate t-test, Multi-variate F-test and 
Principal Component Analysis (PCA) for reducing the 
number of input variables. By means of these methods we 
extracted 5 variables which demonstrated the highest 
sensitivity to discrimination among normals and pathological 
fetuses.. They are reported in table 3.  
 

TABLE 3 
REDUCED SET OF PARAMETERS 

 

computed on the 
whole signal 

1. large accelerations per hour 
2. small accelerations per hour 

computed on each 
3-minutes SQ-segments 

3. LTI (ms) 
4. LF/(MF+HF) 
5. ApEn(1, 0.2)  

 
  

III. RESULTS 
 
As we employed several supervised techniques, a validation 
procedure was needed in order to test the generalization 
properties of the different classification methods. Because of 
the limited number of recordings, we  decided to apply a 
standard crossvalidation technique. At first, 7 non 
overlapping subsets, of 50 recordings each, were randomly 
chosen from the full set of 362 exams. Then, with each 
supervised method, a 7-fold cross -validation technique was 
employed, using the same subsets partition (12 exams never 
entered any test set, though they were always contained in the 
training partition). This procedure ensures a fair comparison 
among different methods. The validation technique consisted 

of a “leave fifty out” procedure. Besides, the whole 
population was divided in two groups: normal (labelled “1”), 
if the baby at delivery was regarded as N, and pathological 
(labelled “2”) when the fetus was included in states H, IUGR, 
DG and MACRO.  
 
Multilayer Perceptron (MLP) 
We tested different MLP architectures, all presenting  5 input 
and 1 output neurons.  The internal hidden layers were 
composed by neurons having a tansigmoid activation 
function, namely 

y = 2/[1 + exp( - 2x)] – 1 
The output of the network was quantized in two values, with 
a static threshold set at zero ( -1≡ “pathological” and 1 ≡ 
“normal”). The MLPs were trained by the adaptive 
backpropagation method and the test was performed 
following the crossvalidation procedure reported above. Input 
CTG parameters in each training set and the corresponding 
actual output groups were used to train the network (30000 
training epochs), until an acceptable error goal was achieved. 
Among the various architectures the best one resulted with 
three layers, composed by 12, 8 and 1 neurons, respectively.  
The classification performance of the NN is reported in table 
4. The MLP performed better then any other technique which 
has been evaluated in this work, showing a 20% 
misclassification rate and an appreciable sensitivity  and 
specificity , both reaching approximatively 80%. 
 
Adaptive Neuro Fuzzy Inference System (ANFIS) 
A further approach to our classification problem consisted of 
applying a Neuro Fuzzy inference system for discriminating 
among normals and pathological tracings. The classifier 
adopts the “Sugeno” metrics and it has been designed by 
means of the Matlab Fuzzy Toolbox. It receives as input the 
five parameters and the gestational age of the fetus and 
produces as ouput one of the two classes (normal or 
pathological). The advantage of using this methodology 
basically resides on the fact that while maintaining the fuzzy  
approach (in alternative to all previous classification methods 
which are “crisp”), it can be trained  exactly as a supervised 
neural network. Both the rules and the membership functions 
are optimized by the learning procedure to obtain the 
minimum error on the input-output training set. This means 
that the designer is not burdened by the usual tasks of fuzzy 
logic which impose to write out the inference rules and to 
determine the membership functions.   
The ANFIS model is structured to generate a number of 
inference of rules  given by the simple relationship  

n° Rules = (n° MF)n° INPUT 
where n°MF  is the number of levels of the memebrship 
functions and INPUT is the number of variables. In our case 
the INPUT was  6 (5+gestational age) and the only reasonable 
n°MF was 2 (n° Rules = 64) in order to avoid  overfitting. 
After the crossvalidation procedure the performance of our 
ANFIS is summarized in table 4. An “a-posteriori” analysis 
of the inference rules automatically generated by the learning 



procedure showed that n° Rules can be manually reduced to 
37 without deteriorating so much the global performance of 
the classifier (25% of misclassification). 

 
IV. DISCUSSION 

 
At present, automated methods have limited clinical 
applications in cardiotocography. A relevant amount of this 
unsatisfactory performance resides on the weakness of 
methods used for classifying fetal condition generating risk 
alarms during pregnancy [8]. Moreover, even if heart rate 
variability became an integral part in fetal evaluation, from 
the clinical point of view the lack of standardization makes 
any comparison very difficult. In the present work we tried to 
move a step forward towards an automated CTG risk alerts 
generator, that might help the physician in drawing the final 
diagnosis. The work was performed at two different levels. 

 
TABLE 4 

COMPARISON OF CLASSIFIERS  
Input 5 parameter set (+ gestational age in ANFIS) 

 Misclas.Rate Sensitivity Specificity 
Statistical Classifiers  

LDA 48.9 18.3 76.6 
QDA 48.3 52.3 51.3 
LOGDA 49.1 19.0 75.6 
KNN1 46.0 46.4 59.9 

Soft computing methods 
ANFIS 22.0 64.0 84.5 
NNET 20.0 76.1 83.3 

 
First we carefully selected the parameters by comparing the 
different definitions in literature and by clearly stating any 
modification introduced in the numerical procedures.  FHR 
signal quality assessment was considered essential [12]. Nu-
merical indexes were computed on short 3 minutes windows 
and averaged to reduce intraindividual variability.  
Second we tested on this set of parameters different 
methodological approaches to the discrimination of  
pathological cases.  Classical supervised classifiers fail to 
distinguish pathological from normal fetuses. It may be 
possible that the normality hypothesis, required by quadratic 
discriminant analysis (DA) and logistic DA, is not 
appropriate for a few variables included in the parameter set. 
The poor value of the true classification rates obtained also 
with linear DA, probably suggest that the two populations lie 
in very convoluted and intermingled regions in the parameters 
space. Direct inspection of the data set confirmed such 
assumptions. Therefore, only methods able to shape very 
complex decision regions are eligible to succeed. 
The ANFIS and MLP algorithms achieved both about 80% 
true classifications rate with sufficient high sensitivity and 
specificity. We acknowledge that the methods need to be 
checked with a large database of CTG recordings before they 
can be used in the clinical environment, but they have been 
setup with a larger clinical study than any other similar 
approach [13, 14]. Moreover the results are encouraging and 
they were achieved by a completely automatic procedure.  

Very preliminary results, obtained by the combination of both 
techniques with a simple rule inference system dealing with 
the gestational age of the fetuses, seem to be promising. This 
solution is only one among the possible future improvements.  
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